Points on the unit sphere.
The sphere can be constructed using one of three conventions:
Sphere(x, y, z)
Sphere(xyz=xyz)
Sphere(theta=theta, phi=phi)
Parameters : | x, y, z : 1-D array_like
theta, phi : 1-D array_like
xyz : (N, 3) ndarray
faces : (N, 3) ndarray
edges : (N, 2) ndarray
|
---|
Methods
edges() | |
faces() | |
subdivide([n]) | Subdivides each face of the sphere into four new faces. |
vertices() |
Subdivides each face of the sphere into four new faces.
New vertices are created at a, b, and c. Then each face [x, y, z] is divided into faces [x, a, c], [y, a, b], [z, b, c], and [a, b, c].
y
/ / a/____
/\ / / \ / /____\/____ x c z
Parameters : | n : int, optional
|
---|---|
Returns : | new_sphere : Sphere
|
Points on the unit sphere.
A HemiSphere is similar to a Sphere but it takes antipodal symmetry into account. Antipodal symmetry means that point v on a HemiSphere is the same as the point -v. Duplicate points are discarded when constructing a HemiSphere (including antipodal duplicates). edges and faces are remapped to the remaining points as closely as possible.
The HemiSphere can be constructed using one of three conventions:
HemiSphere(x, y, z)
HemiSphere(xyz=xyz)
HemiSphere(theta=theta, phi=phi)
Parameters : | x, y, z : 1-D array_like
theta, phi : 1-D array_like
xyz : (N, 3) ndarray
faces : (N, 3) ndarray
edges : (N, 2) ndarray
tol : float
|
---|
See also
Methods
edges() | |
faces() | |
from_sphere(klass, sphere[, tol]) | Create instance from a Sphere |
mirror() | Create a full Sphere from a HemiSphere |
subdivide([n]) | Create a more subdivided HemiSphere |
vertices() |
Create instance from a Sphere
Create a full Sphere from a HemiSphere
Create a more subdivided HemiSphere
See Sphere.subdivide for full documentation.
Triangulate a set of vertices on the sphere.
Parameters : | vertices : (M, 3) ndarray
|
---|---|
Returns : | faces : (N, 3) ndarray
|
Extract all unique edges from given triangular faces.
Parameters : | faces : (N, 3) ndarray
return_mapping : bool
|
---|---|
Returns : | edges : (N, 2) ndarray
mapping : (N, 3)
|