LLT Cholesky decomposition of a sparse matrix and associated features. More...
Public Types | |
typedef SparseMatrix< Scalar > | CholMatrixType |
typedef MatrixType::Index | Index |
typedef _MatrixType | MatrixType |
Public Member Functions | |
Index | cols () const |
void | compute (const MatrixType &matrix) |
int | flags () const |
const CholMatrixType & | matrixL (void) const |
RealScalar | precision () const |
Index | rows () const |
void | setFlags (int f) |
void | setPrecision (RealScalar v) |
template<typename Rhs > | |
const internal::solve_retval < SparseLLT< MatrixType >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
template<typename Derived > | |
bool | solveInPlace (MatrixBase< Derived > &b) const |
SparseLLT (const MatrixType &matrix, int flags=0) | |
SparseLLT (int flags=0) | |
bool | succeeded (void) const |
Protected Types | |
enum | { SupernodalFactorIsDirty, MatrixLIsDirty } |
typedef NumTraits< typename _MatrixType::Scalar >::Real | RealScalar |
typedef _MatrixType::Scalar | Scalar |
Protected Attributes | |
int | m_flags |
CholMatrixType | m_matrix |
RealScalar | m_precision |
int | m_status |
bool | m_succeeded |
LLT Cholesky decomposition of a sparse matrix and associated features.
MatrixType | the type of the matrix of which we are computing the LLT Cholesky decomposition |
SparseLLT | ( | const MatrixType & | matrix, | |
int | flags = 0 | |||
) | [inline] |
Creates a LLT object and compute the respective factorization of matrix using flags flags.
void compute | ( | const MatrixType & | matrix | ) | [inline] |
int flags | ( | ) | const [inline] |
const CholMatrixType& matrixL | ( | void | ) | const [inline] |
RealScalar precision | ( | ) | const [inline] |
void setFlags | ( | int | f | ) | [inline] |
Sets the flags. Possible values are:
void setPrecision | ( | RealScalar | v | ) | [inline] |
Sets the relative threshold value used to prune zero coefficients during the decomposition.
Setting a value greater than zero speeds up computation, and yields to an imcomplete factorization with fewer non zero coefficients. Such approximate factors are especially useful to initialize an iterative solver.
Note that the exact meaning of this parameter might depends on the actual backend. Moreover, not all backends support this feature.
bool solveInPlace | ( | MatrixBase< Derived > & | b | ) | const [inline] |
Computes b = L^-T L^-1 b
bool succeeded | ( | void | ) | const [inline] |