NIPY logo
Home · Quickstart · Documentation · Citation · NiPy
Google search is disabled in Debian offline docs

Versions

ReleaseDevel
0.11.00.11.0
Download Github

Links

sMRI: Using ANTS for registration

In this simple tutorial we will use the Registration interface from ANTS to coregister two T1 volumes.

  1. Tell python where to find the appropriate functions.
import os
import urllib2
from nipype.interfaces.ants import Registration
  1. Download T1 volumes into home directory
homeDir=os.getenv("HOME")
requestedPath=os.path.join(homeDir,'nipypeTestPath')
mydatadir=os.path.realpath(requestedPath)
if not os.path.exists(mydatadir):
    os.makedirs(mydatadir)
print mydatadir

MyFileURLs=[
           ('http://slicer.kitware.com/midas3/download?bitstream=13121','01_T1_half.nii.gz'),
           ('http://slicer.kitware.com/midas3/download?bitstream=13122','02_T1_half.nii.gz'),
           ]
for tt in MyFileURLs:
    myURL=tt[0]
    localFilename=os.path.join(mydatadir,tt[1])
    if not os.path.exists(localFilename):
        remotefile = urllib2.urlopen(myURL)

        localFile = open(localFilename, 'wb')
        localFile.write(remotefile.read())
        localFile.close()
        print("Downloaded file: {0}".format(localFilename))
    else:
        print("File previously downloaded {0}".format(localFilename))

input_images=[
os.path.join(mydatadir,'01_T1_half.nii.gz'),
os.path.join(mydatadir,'02_T1_half.nii.gz'),
]
  1. Define the parameters of the registration
reg = Registration()
reg.inputs.fixed_image =  input_images[0]
reg.inputs.moving_image = input_images[1]
reg.inputs.output_transform_prefix = 'thisTransform'
reg.inputs.output_warped_image = 'INTERNAL_WARPED.nii.gz'

reg.inputs.output_transform_prefix = "output_"
reg.inputs.transforms = ['Translation', 'Rigid', 'Affine', 'SyN']
reg.inputs.transform_parameters = [(0.1,), (0.1,), (0.1,), (0.2, 3.0, 0.0)]
reg.inputs.number_of_iterations = ([[10000, 111110, 11110]]*3 +
                                    [[100, 50, 30]])
reg.inputs.dimension = 3
reg.inputs.write_composite_transform = True
reg.inputs.collapse_output_transforms = False
reg.inputs.metric = ['Mattes'] * 3 + [['Mattes', 'CC']]
reg.inputs.metric_weight = [1] * 3 + [[0.5, 0.5]]
reg.inputs.radius_or_number_of_bins = [32] * 3 + [[32, 4]]
reg.inputs.sampling_strategy = ['Regular'] * 3 + [[None, None]]
reg.inputs.sampling_percentage = [0.3] * 3 + [[None, None]]
reg.inputs.convergence_threshold = [1.e-8] * 3 + [-0.01]
reg.inputs.convergence_window_size = [20] * 3 + [5]
reg.inputs.smoothing_sigmas = [[4, 2, 1]] * 3 + [[1, 0.5, 0]]
reg.inputs.sigma_units = ['vox'] * 4
reg.inputs.shrink_factors = [[6, 4, 2]] + [[3, 2, 1]]*2 + [[4, 2, 1]]
reg.inputs.use_estimate_learning_rate_once = [True] * 4
reg.inputs.use_histogram_matching = [False] * 3 + [True]
reg.inputs.initial_moving_transform_com = True

print reg.cmdline
  1. Run the registration
reg.run()

Example source code

You can download the full source code of this example. This same script is also included in the Nipype source distribution under the examples directory.